23 research outputs found

    Ptolemaic Indexing

    Full text link
    This paper discusses a new family of bounds for use in similarity search, related to those used in metric indexing, but based on Ptolemy's inequality, rather than the metric axioms. Ptolemy's inequality holds for the well-known Euclidean distance, but is also shown here to hold for quadratic form metrics in general, with Mahalanobis distance as an important special case. The inequality is examined empirically on both synthetic and real-world data sets and is also found to hold approximately, with a very low degree of error, for important distances such as the angular pseudometric and several Lp norms. Indexing experiments demonstrate a highly increased filtering power compared to existing, triangular methods. It is also shown that combining the Ptolemaic and triangular filtering can lead to better results than using either approach on its own

    Optimal Metric Search Is Equivalent to the Minimum Dominating Set Problem

    Full text link
    In metric search, worst-case analysis is of little value, as the search invariably degenerates to a linear scan for ill-behaved data. Consequently, much effort has been expended on more nuanced descriptions of what performance might in fact be attainable, including heuristic baselines like the AESA family, as well as statistical proxies such as intrinsic dimensionality. This paper gets to the heart of the matter with an exact characterization of the best performance actually achievable for any given data set and query. Specifically, linear-time objective-preserving reductions are established in both directions between optimal metric search and the minimum dominating set problem, whose greedy approximation becomes the equivalent of an oracle-based AESA, repeatedly selecting the pivot that eliminates the most of the remaining points. As an illustration, the AESA heuristic is adapted to downplay the role of previously eliminated points, yielding some modest performance improvements over the original, as well as its younger relative iAESA2
    corecore